Convergence and Numerical Solution of a Model for Tumor Growth

نویسندگان

چکیده

In this paper, we show the application of meshless numerical method called “Generalized Finite Diference Method” (GFDM) for solving a model tumor growth with nutrient density, extracellular matrix and degrading enzymes, [recently proposed by Li Hu]. We derive discretization parabolic–hyperbolic–parabolic–elliptic system means explicit formulae GFDM. provide theoretical proof convergence spatial–temporal scheme to continuous solution several examples over regular irregular distribution points. This shows feasibility nonlinear appearing in Biology Medicine complicated realistic domains.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the innovation of a statistical model to estimate dependable rainfall (dr) and develop it for determination and classification of drought and wet years of iran

آب حاصل از بارش منبع تأمین نیازهای بی شمار جانداران به ویژه انسان است و هرگونه کاهش در کم و کیف آن مستقیماً حیات موجودات زنده را تحت تأثیر منفی قرار می دهد. نوسان سال به سال بارش از ویژگی های اساسی و بسیار مهم بارش های سالانه ایران محسوب می شود که آثار زیان بار آن در تمام عرصه های اقتصادی، اجتماعی و حتی سیاسی- امنیتی به نحوی منعکس می شود. چون میزان آب ناشی از بارش یکی از مولفه های اصلی برنامه ...

15 صفحه اول

investigating the feasibility of a proposed model for geometric design of deployable arch structures

deployable scissor type structures are composed of the so-called scissor-like elements (sles), which are connected to each other at an intermediate point through a pivotal connection and allow them to be folded into a compact bundle for storage or transport. several sles are connected to each other in order to form units with regular polygonal plan views. the sides and radii of the polygons are...

Convergence of product integration method applied for numerical solution of linear weakly singular Volterra systems

We develop and apply the product integration method to a large class of linear weakly singular Volterra systems. We show that under certain sufficient conditions this method converges. Numerical implementation of the method is illustrated by a benchmark problem originated from heat conduction.

متن کامل

Extrapolation Method for Numerical Solution of a Model for Endemic Infectious Diseases

Introduction Many infectious diseases are endemic in a population. In other words they present for several years. Suppose that the population size is constant and the population is uniform. In the SIR model the population is divided into three disjoint classes which change with time t and let ,  and be the fractions of the population that susceptible, infectious and removed, respectively. This...

متن کامل

Convergence of Numerical Method For the Solution of Nonlinear Delay Volterra Integral ‎Equations‎

‎‎In this paper, Solvability nonlinear Volterra integral equations with general vanishing delays is stated. So far sinc methods for approximating the solutions of Volterra integral equations have received considerable attention mainly due to their high accuracy. These approximations converge rapidly to the exact solutions as number sinc points increases. Here the numerical solution of nonlinear...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2021

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math9121355